Dictionary pruning with visual word significance for medical image retrieval

نویسندگان

  • Fan Zhang
  • Yang Song
  • Tom Weidong Cai
  • Alexander G. Hauptmann
  • Sidong Liu
  • Sonia Pujol
  • Ron Kikinis
  • Michael J. Fulham
  • David Dagan Feng
  • Mei Chen
چکیده

Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Ranking-Based Vocabulary Pruning in Bag-of-Features for Image Retrieval

Content-based image retrieval (CBIR) has been applied to a variety of medical applications, e.g., pathology research and clinical decision support, and bag-of-features (BOF) model is one of the most widely used techniques. In this study, we address the problem of vocabulary pruning to reduce the influence from the redundant and noisy visual words. The conditional probability of each word upon t...

متن کامل

Web Image Retrieval Using Visual Dictionary

In this research, we have proposed semantic based image retrieval system to retrieve set of relevant images for the given query image from the Web. We have used global color space model and Dense SIFT feature extraction technique to generate visual dictionary using proposed quantization algorithm. The images are transformed into set of features. These features are used as inputs in our proposed...

متن کامل

Unsupervised Learning of Visual Sense Models for Polysemous Words

Polysemy is a problem for methods that exploit image search engines to build object category models. Existing unsupervised approaches do not take word sense into consideration. We propose a new method that uses a dictionary to learn models of visual word sense from a large collection of unlabeled web data. The use of LDA to discover a latent sense space makes the model robust despite the very l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2016